Trigonometry

It is possible to calculate the angles in any right angle triangle once you have two sides, or if you have one side and one angle you can calculate the other side.

Once there are angles involved you need to use either of three rules: The SIN, COS, and the TAN RULES

These are three mathematical ratios that were worked out years ago enabling you to transfer from numbers to angles (in the triangle) and also from angles to numbers.

There are three sides to any triangle and you need manipulate these in order to use the sin, cos or tan rules as shown below:

In the same triangle, when the angle changes, the opposite and adjacent sides also change.

Opposite

Remember: - The HYPOTENUSE is the longest side in the triangle and is always opposite from the rightangle (It's position never changes)

- The OPPOSITE is the side that is opposite to the angle in question
- The ADJACENT is the side that is adjacent to or beside the angle in question

Trigonometry (Continued)

Example 1: In the following triangle, calculate the angle at A ?

Firstly: Which two sides do we have in relation to the angle?
Answer: Adjacent and Hypotenuse

Secondly: Which formula contains these two sides?
Answer: Cosine
Formula: $\operatorname{Cos} \mathrm{A}=\frac{\text { Adjacent }}{\text { Hypotenuse }}$

$$
\begin{aligned}
& \quad \begin{array}{l}
\frac{10}{18} \\
\operatorname{Cos} \mathrm{~A}=18 \\
\operatorname{Cos} \mathrm{~A}=0.5556 \\
\operatorname{Cos}^{-1} \mathrm{~A}=56.247 \text { degrees (inverse of } \operatorname{Cos} \text {) } \\
\quad \mathrm{A}=56.25 \text { degrees }
\end{array} .
\end{aligned}
$$

Example 2: In the following triangle, calculate the length of the unknown side if the given angle is 34 degrees ?

Firstly: Which two sides do we have in relation to the angle?
Answer: Opposite and Hypotenuse

Secondly: Which formula contains these two sides?
Answer: Sine
Opposite
Formula: Sin A = Hypotenuse

$$
\operatorname{Sin} 34^{\circ}=\frac{9}{\mathrm{x}} \quad\left(\sin 34^{\circ}=0.5592\right)
$$

$$
0.5592=\frac{9}{x}
$$

$$
9
$$

$$
x=\overline{0.5592}
$$

$$
x=16.0944
$$

Trigonometry (Continued)

It will be seen that for every question only one of the formulas can be used. To work out which formula to use you need to assess what you have and what you want. In all cases you will have two out of the three pieces of information required.
(Sometimes you will have to arrive at what the angle is the three angles in a triangle add up to 180°)

If you have an angle starting out you will have to subject it to Sin, Cos, or Tan to calculate your answer.

If you are looking for an angle, your last line will consist of you using Inverse Sin, Inverse Cos, or Inverse Tan against a decimal figure to get your answer.

For cross multiplying purposes:
If x is below the line, swap it over
If x is above the line, just multiply it out

Find the Unknown Angle or Side Length (Sheet 1)

Q. 1

Q. 2

Q. 3

8
Q. 4

Q. 5

Q. 7

Q. 8

Q. 9

Q. 10

Find the Unknown Angle or Side Length (Sheet 1)

Q. 13

10
Q. 15

Q. 17

Q. 18

Q. 19

Q. 20

Formulas : opposite \quad adjacent \quad opposite
Sin A = hypotenuse
$\operatorname{Cos} \mathrm{A}=$ hypotenuse
Tan A = adjacent
Q. 1
$\quad \underline{5}$
Tan $\mathrm{A}=8$
$\operatorname{Tan} \mathrm{~A}=0.625$
Tan- $^{-1} \mathrm{~A}=32.005$
Answer $=\mathbf{3 2}^{\circ}$
Q. 2
$\begin{aligned} \text { Tan } 60^{\circ} & =\underline{x} \\ 1.7321 & \underline{9} \\ x & =\underset{x}{1.7321} \\ \text { Answer } & =5.196\end{aligned}$
Q. $3 \quad \operatorname{Cos} \mathrm{~A}=\underline{8} 12$
$\operatorname{Cos} \mathrm{A}=0.6666$
$\operatorname{Cos}^{-1} \mathrm{~A}=48.1896$
Answer $=48.19^{\circ}$
Answer = 5.196
Q. 4
$\operatorname{Sin} 57^{\circ}=\frac{\underline{X}}{15}$
$0.8387=\frac{\underline{x}}{15}$
0.8387 x $15=$ x

Answer $=12.58$
Q. 5
Tan $A=\frac{6}{9}$
Tan A $=0.6666$
Tan- ${ }^{1}$ A= 33.690
Answer $=33.69^{\circ}$
Q. 6

Tan $65^{\circ}=\stackrel{\underline{x}}{4}$
$2.145=\frac{\underline{x}}{4}$
$2.145 \times 4=x$
Answer $=\mathbf{8 . 5 7 8}$
Q. 7

Sin $\mathrm{A}=\underline{\underline{9}}$
$\operatorname{Sin} A=0.6923$
$\operatorname{Sin}^{-1} \mathrm{~A}=43.813$
Answer $=43.81^{\circ}$
Q. 8
$\operatorname{Cos} 32^{\circ}=\stackrel{\underline{x}}{12}$
$0.848=\frac{\underline{x}}{12}$
$0.848 \times 12=x$
Q. $9 \quad \operatorname{Cos} \mathrm{~A}=\frac{7}{16}$
$\operatorname{Cos} \mathrm{A}=0.4375$
$\operatorname{Cos}^{-1} \mathrm{~A}=64.0555$
Answer $=64.06^{\circ}$
Answer = 10.18
Q. 10
$\operatorname{Sin} 37^{\circ}=\frac{7}{x}$
$0.6018=\frac{7}{x}$
$x=0.6018$

Answer = 11.63
Q. 11
Tan A $=\stackrel{4}{9}$
Tan A $=0.4444$
Tan- ${ }^{1} \mathrm{~A}=23.9625$
Answer $=23.96^{\circ}$
Q. $12 \operatorname{Tan} 59^{\circ}=\frac{12}{\mathrm{x}}$
$1.6643=\frac{12}{x}$
12

$$
x=1 . \overline{66}
$$

Answer $=7.229$
Q. $13 \quad \operatorname{Cos} \mathrm{~A}=\frac{10}{15}$
$\operatorname{Cos} \mathrm{A}=0.6666$
$\mathrm{Cos}^{-1} \mathrm{~A}=48.1896$
Answer $=48.19^{\circ}$
Q. $14 \operatorname{Sin} 67^{\circ}=19$
$0.9205=\stackrel{\underline{x}}{19}$
$0.9205 \times 19=x$

Answer = 17.49

Q. 16 Tan $27^{\circ}=\begin{array}{r}\underline{6} \\ \\ \underline{x} \\ \underline{6}\end{array}$
$0.5095=\bar{x}$
6
$\mathrm{x}=0.5095$
Answer $=11.776$
Q. 19
$\operatorname{Cos} A=\frac{3}{7}$
$\operatorname{Cos} \mathrm{A}=7$
$\operatorname{Cos} \mathrm{A}=0.4286$
$\operatorname{Cos}^{-1} \mathrm{~A}=64.623$
Answer $=64.62^{\circ}$
Q. $18 \quad \begin{aligned} & \operatorname{Cos} 35^{\circ}=1 \underline{x} \\ & 0.8192=\underline{15} \\ & 0.8192 \times 15\end{aligned}=x$.

Answer $=12.29$

Answer $=44.9^{\circ}$
Q. $20 \quad \operatorname{Sin} 29^{\circ}=\frac{7}{x}$

7
$0.4848=\bar{x}$
$\mathrm{x}=0.4 \overline{8} 48$

Find the Unknown Angle or Side Length (Sheet 2)

Q. 22

13

13

18
Q. 29

6
Q. 30

11

Find the Unknown Angle or Side Length (Sheet 2)

Q. 32

Q. 33

14
Q. 34

12
Q. 35

Q. 36

Q. 37

12
Q. 38

Q. 39

14
Q. 40

12

Formulas : opposite opjacent oposite
Sin A = hypotenuse
$\operatorname{Cos} \mathrm{A}=$ hypotenuse
Tan A = adjacent
Q. 21
$\operatorname{Sin} A=\underline{3}$
$\operatorname{Sin} A=0.25$
Sin- ${ }^{1} \mathrm{~A}=14.478$
Answer $=14.48^{\circ}$
Q. 22
$\operatorname{Tan} 57^{\circ}=\frac{\underline{x}}{9}$
$1.540=\frac{\underline{x}}{9}$
$1.540 \times 9=\mathrm{x}$
Q. 23
Tan $A=\frac{13}{7}$
Tan $\mathrm{A}=1.857$
Tan- ${ }^{1}$ A=61.7
Answer =61.7 ${ }^{\circ}$
Answer = 13.86
Q. $24 \operatorname{Cos} 23^{\circ}=\frac{17}{x}$

$$
\begin{gathered}
0.9205=\frac{17}{x} \\
x=\frac{17}{0.9205}
\end{gathered}
$$

Q. 25
$\operatorname{Cos} \mathrm{A}=\frac{13}{16}$
$\operatorname{Cos} \mathrm{A}=0.8125$
Cos- $^{-1} \mathrm{~A}=35.659$
Answer $=35.66^{\circ}$
Answer $=18.468$
Q. 27
Q. 26
$\operatorname{Cos} 63^{\circ}=\frac{\mathrm{x}}{8}$
$0.454=\frac{x}{8}$
$0.454 \times 8=x$
Answer = 3.632
Q. $28 \operatorname{Sin} 30^{\circ}=15$
\underline{x}
$0.5=15$
$0.5 \times 15=\mathrm{x}$
Answer = 7.5
Q. $29 \operatorname{Tan} A=\frac{3}{6}$
Tan $\mathrm{A}=0.5$
Tan- ${ }^{1} \mathrm{~A}=26.565$
Answer $=26.57^{\circ}$
Q. 30
Q. 31

$$
\begin{aligned}
& \operatorname{Sin} A=\underline{5} \\
& \operatorname{Sin} A=0.3846 \\
& \operatorname{Sin}^{-1} \mathrm{~A}=22.62
\end{aligned}
$$

Q. 32

$$
\begin{aligned}
\text { Tan } 60^{\circ} & =\frac{\mathrm{x}}{7} \\
1.732 & =\frac{\mathrm{x}}{7} \\
\mathrm{x} & =1.732 \times 7 \\
\text { Answer } & =\mathbf{1 2 . 1 2 4}
\end{aligned}
$$

Answer $=5.129$
Q. 33
$\operatorname{Tan} \mathrm{A}=\frac{14}{9}$
Tan $\mathrm{A}=1.556$
Tan- ${ }^{1} \mathrm{~A}=57.265$
Answer $=57.27^{\circ}$
Q. $36 \operatorname{Cos} 52^{\circ}=\frac{\underline{\mathrm{X}}}{16}$
$0.6157=\frac{\underline{\mathrm{x}}}{16}$
$\mathrm{x}=0.6157 \mathrm{x} 16$
Answer $=9.85$
Q. 35
$\operatorname{Cos} A=\frac{8}{15}$
$\operatorname{Cos} \mathrm{A}=0.5333$
$\operatorname{Cos}^{-1} \mathrm{~A}=57.77$
Answer $=57.77^{\circ}$
Q. $38 \quad \begin{aligned} & \operatorname{Sin} 22^{\circ}=\underline{\underline{x}} \\ & \\ & 0.3746 \\ & =\underline{x} \\ & 0.3746 \times 13=x\end{aligned}$

Answer $=4.87$
Q. $39 \quad \underline{7}$

Tan A $=14$
Tan $\mathrm{A}=0.5$
Tan ${ }^{-1} \mathrm{~A}=26.565$
Answer $=26.57^{\circ}$
Q. $37 \quad \operatorname{Sin} A=\frac{12}{20}$
$\operatorname{Sin} \mathrm{A}=0.6$
Sin ${ }^{1} \mathrm{~A}=36.87$
Answer $=36.87^{\circ}$
Q. $34 \begin{aligned} \operatorname{Cos} 27^{\circ} & =\frac{12}{\mathrm{x}} \\ 0.891 & =\frac{12}{\mathrm{x}} \\ & \frac{12}{891}\end{aligned}$
$\mathrm{x}=0.891$
Answer $=13.468$
$\underline{12}$
Q. $40 \operatorname{Tan} 70^{\circ}=\mathrm{x}$

$$
\begin{aligned}
2.747 & =\frac{12}{\mathrm{x}} \\
\mathrm{x} & =\frac{12}{2.747}
\end{aligned}
$$

Answer $=4.368$

