Quantitative Methods

Trigonometry

Module No. Cons 1012
Lecturer Jennifer Byrne

Trigonometry

- Earlier we learned what the Hypotenuse line in a triangle was. It is the longest length and it is always opposite the right angle in a right angled triangle.
- It is possible to calculate the angles in any right angle triangle once you have two sides, or if you have one side and one angle you can calculate the other side.
- The SIN, COS, and the TAN RULES are required once angles are involved.
- These are three mathematical ratios that enable you to transfer from numbers to angles (in the triangle) and also from angles to numbers.

Trigonometry

- You will have to decide which of the rules SIN, COS, and the TAN RULES are applied. This will depend on what information is shown.

$\operatorname{Sin} A=$	Opposite Hypotenuse
$\operatorname{Cos} A=$	Adjacent Hypotenuse
$\operatorname{Tan} A=$Opposite Adjacent	

In the same triangle, when the angle changes, the opposite and adjacent sides also change

Trigonometry

- The HYPOTENUSE is the longest side in the triangle and is always opposite from the right-angle (It's position never changes).
- The OPPOSITE is the side that is opposite to the angle in question.
$\operatorname{Sin} \mathrm{A}=$ Opposite Hypotenuse
$\operatorname{Cos} A=\frac{\text { Adjacent }}{\text { Hypotenuse }}$

Tan A $=\frac{\text { Opposite }}{\text { Adjacent }}$

Adjacent

Trigonometry

- For every question only one of the formulas can be used.
- To work out which formula to use you need to assess what you have and what you want.
- In all cases you will have two out of the three pieces of information required.
- You may be required to carry out some additional work to find the remaining angle. The three angles in a triangle add up to 180°.
- $30^{\circ}+60^{\circ}+90^{\circ}=180^{\circ}$
- $18^{\circ}+72^{\circ}+90^{\circ}=180^{\circ}$

Trigonometry

- For every question only one of the formulas can be used.

Formulas: opposite adjacent opposite

$\operatorname{Sin} \mathrm{A}=$ hypotenuse $\quad \operatorname{Cos} \mathrm{A}=$ hypotenuse $\quad \operatorname{Tan} \mathrm{A}=\operatorname{adjacent}$

- It you have an angle starting out you will have to subject it to Sin, Cos, or Tan to calculate your answer.
- If you are looking for an angle, your last line will consist of you using Inverse Sin, Inverse Cos, or Inverse Tan against a decimal figure to get your answer.
- For cross multiplying purposes:
- If x is below the line, swap it over
- If \mathbf{x} is above the line, just multiply it out

Calculators

- Different models of calculators have $2^{\text {nd }}$ function buttons in different places. On this model it is the SHIFT button
- Make sure that you become familiar with them by carrying out simple or known calculations.
- Be careful pressing the equals button too many times.
- Inverse Cos or Cos $^{-1}$ press SHIFT Cos to convert decimal number to degrees.

Trigonometry

- Example 1: Calculate the angle at A

- Which two sides do we have in relation to the angle?
- Adjacent and Hypotenuse
- Which formula contains these two sides? Formula $\operatorname{Cos} \mathrm{A}=\frac{\text { Adjacent }}{\text { Hypotenuse }}$
- Cosine
- $\cos A=\frac{10}{18} \quad(10 \div 18=0.5556)$
- $\operatorname{Cos} A=0.5556$
- $\operatorname{Cos}^{-1} A=56.247$ degrees (inverse of Cos)
- $A=56.25^{\circ}$

Trigonometry

- Example 2: Calculate the length of the unknown side if the given angle is 34°

- Which two sides do we have in relation to the angle?
- Opposite and Hypotenuse
- Which formula contains these two sides? Formula Sine A $=\frac{\text { Opposite }}{\text { Hypotenuse }}$
- Sine
- $\operatorname{Sine} 34^{\circ}=\frac{9}{x} \quad\left(\sin 34^{\circ}=0.5592\right)$
- $0.5592=\frac{9}{x}$
- $X=\frac{9}{0.5592}$
- $X=16.0944$

Trigonometry

- Find the Unknown Angle or Side Length

Q. 10

12

Solutions

Q. 6

- $\operatorname{Tan} 65^{\circ}=X / 4$
- $2.145=x / 4$
- $2.245 \times 4=\mathrm{X}$
- Answer $=8.578$
Q. 10

- $\operatorname{Sin} 37^{\circ}=7 / X$
- $0.6018=7 / X$
- $X=7 / 0.6018$
- Answer 11.63

Solutions

12

- $\operatorname{Sin} A=12 / 17$
- $\operatorname{Sin} A=0.7059$
- $\operatorname{Sin}^{-1} A=44.901$
- Answer $=44.9^{\circ}$

- $\operatorname{Tan} \mathrm{A}=7 / 14$
- $\operatorname{Tan} A=0.5$
- $\operatorname{Tan}^{-1} \mathrm{~A}=26.565$
- Answer 26.57°

